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Sirken [3] has proposed using the weights: 

(1.5) wa i(S) = = /sa , 

for all S, and for all (a,i) such that 6a = 1 

1. Introduction and Notation 

In a sample survey with multiplicity, 
(Sirken [3]), designed to estimate the total 
number, N, of events occurring in a population of 
L reporting units, each event is linked to one or 
more reporting units, by a well defined counting 
rule. The counting rule is defined by the values 
of the indicator variable, 6a which takes the 

value one if the a -th event is linked to the i -th 
reporting unit (a= 1,...,N; i= 1,...,L), where: 

L 

(1.1) s = 6 
. 

>1 (a= 1,...,N), 
i =1 

i.e. each event is linked to at least one 
reporting unit. The value of is termed the 

multiplicity of the a -th event. 

A probability sample, S, of reporting units 
is defined by the indicator variable di(S), 

which equals 1 if the i -th reporting unit is in 
the sample, S. 

Initially, it will be assumed that, if 
di(S) = 1 , the v e c t o r 

= (6a L) 
is 

known for all a= 1,...,N, such that 1, i.e., 

each reporting unit in the sample reports, for 
each event linked to it, on all other reporting 
units linked to the same event and there are no 
response errors. 

If E[di(S)] > (i= 1,...,L), then a weighted 

linear multiplicity estimator of N is defined as: 

L d. (S) N 
(1.2) N(S) = 

il al 

where wa,i(S) are any real numbers. The 

expectation of the estimator is: 

L N 
(1.3) E[N(S)] = E[wa.(S)Idi(S) = 1)6a,i 

i =1 a =1 

N 
L 

= 
a =1 i =1 

where E[wa,i(S)Idi(S) = 1]. 

Thus, in order that N(S) be an unbiased 
estimator of N for any matrix, = 

(a= 1,...,N;i= 1,...,L), for which (1.1) holds, the 
following relationship must hold; 

L 

(1.4) 

il wa i6a . = 
1 (a= 1,...,N). 
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(i.e. weighting by the reciprocal of the 
multiplicity). For these weights, referred to in 
[4] as unit weights, (1.4) obviously holds, so 
that N(S) is unbiased estimator. In the 
following, it will be shown that, in a certain 
sense, this weighting is optimal for simple ran- 
dom sampling under the above assumption, in the 
absence of response errors. However alternative 
weighting procedures must be considered if there 
are response errors. The components of mean 
square error, taking response errors into account, 
are evaluated approximately as a function of 
certain parameters. This allows the comparison 
of alternative counting rules and weighting 
methods. 

2. 

Eptimal Weighting in the Absence of Response 
Errors 

In the following, simple random sampling 
without replacement, of size t, will be assumed, 
i.e.. 

(2.1) E[di(S)] = 

E[di(S)dj(S)] = [u(k-1)]/[L(L-1)], (i#j). 

Let: 

(2.2) Xi(S) = 
wa i(S)6a,i a1 

and 

N 
(2.3) = E[Xi(S)Idi(S)=1] = 

wa i 
a=1 

Then it can easily be shown that the 
variance of the estimate (1.3) is: 

L 
(2.4) Var[N(S)] = (L /R)2 E{ d. (S) [Xi(S) -Xi] 

i 

t(L-1) (Xi-N/L) 

2 

Each of the two terms is non -negative and, 
for given values of Xi, the variance is minimal 

if, for all S such that di(S) = 1, 

N 
(2.5) Xi(S)-Xi = ai(S)-wai]6ai O. 



But, for (2.5) to hold it is sufficient if, for 
all S, such that di(S) = 1: 

(2.6) wa i(S) = wa (a= 1,...,N;i= 1,...,L). 

Since, when (2.6) holds, the variance (2.4) 

depends only on the values of Xi, which in turn 

depend only on the values of wa weighting 

which is independent of the sample is optimal, 
in the above sense. 

For sample- independent weighting (i.e. if 
(2.6) holds) the variance (2.4) is minimized if 
L 

is minimal subject to (1.4). For given a, 
i =1 
weights wa can easily be found.to attain this. 

However A must be assùmed unknown, except for the 
row vectors =(6 

a,1' ...,6a L), 
such that 

L 
di(S)6 (i.e. for events linked to at 

i =1 

least one reporting unit in the sample). But 
sample- independent weighting requires that for 
given the weights, w must be a function 

o' 

only of 6 . Thus the following minimax approach 

is implied: 

Let D(6 ) be the set of matrices, o, for 

which the ao -th row is 6 . For a given matrix o, 

0 
let W(e) be the set of all vector functions: 

w: {0,1 }L RL , 

for which (1.4) holds, i.e.: 

(2.7) i )6 = 1. 

Let: 

L N 2 

(2.8) = [ wi(6)6ai] 
i=1 a=1 

Then, for a given vector 6 , the optimal 

weight vector, 0(6 ), is defined as that for 

which: 

(2.9) max f(w,t), 
wcW(A) AcD(6 ) 

0 

is attained. 

It is easy to see that, for a given 
o 
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(2.10) max f(w,e) = (N -1)2 + 

- 

L 

+ w. ) + 2(N -1) max w.(6 ), 

i =1 
1 -ao 

for any such that ). The maximum 
0 

is attained by o* such that 6á and, if 

0 0 

max w.(6 ) = w. (6 ), 
1 ao 

(2.11) 

1 ; i =i0 

0 ; ii0 , 

(0a0; a= 1,...,N). 

The minimum of (3.4), for weW(A *), is: 

(2.12) min f(w,o *) (N -1)2 + 
1 2(N -1) 

*) 

This minimum is attained by w* for which 

(6 ) = , for all i= 1,...,L, such that 
o 

6 = 1. 

aoi 

Thus the unit weighting (1.5) is optimal in 
the above minimax sense. 

3. Weighting in the Presence of Response Errors 

If, as usually happens in practice, events, 
for which 6a = 1 and for which di(S) = 1, are 

sometimes under- reported, or if there is over - 
reporting of events, the optimality of the 
weights (1.5) is not necessarily attained. For 

the case where the reciprocals of the multi- 
plicities are used as weights, an approximation 
to the total mean square error, including re- 
sponse and sampling error components, of the 
estimate (1.3) is given in Nathan [1], under 
certain simplifying assumptions. In the fol- 
lowing a similar development for a general 
weighting scheme will be given. 

The weighting can be defined by means of a 
variable, Za measurable for all i, such that 

, 

1 for any event, a, for which 

di(S)6 (i.e. the event is linked to at 
i 

least one reporting unit in the sample). 



L 
Let Z« 

Za 
Then for the weights: 

i =1 ' 
Z 

(3.1) wa 
a 

the relationship (1.4) holds,,,so that, in the 
absence of response errors, N(S), would be un- 
biased. Thus if the variable Z 

a,1 
is the number 

of persons linked to the event in the household, 
element weighting, as defined by Sirken and 
Royston [4], is obtained. 

Response errors may occur both due to 
under- reporting or over- reporting of events and 
to errors in reporting the values of Za and of 

Z. For the present it is assumed that there is 

no over- reporting of events. This assumption is 
made to simplify the expressions and will be 
later relaxed. 

In addition to the assumptions and notations 
of [1], it will be assumed that the weighting 
variables, Za are observed without error, if 

=1, i.e. the reporting unit itself reports 

correctly on its own value. However, response 
errors may occur in the reporting of Za. Let 

Za(i,t) be the value reported for Za by the i -th 

reporting unit at trial t. Unbiasedness will be 
assumed, so that: 

(3.2) Et[Za(i,t)] = Za (i= 1,...,L; a= 1,...,N) 

The relative response variance of Za(i,t) is 

assumed to be independent of a and of i, so that: 

(3.3) Vart[Za(i,t)] = 

(i= 1,...,L a= 1,...,N). 

The sample estimate of N, at trial t, for sample 
S, is: 

L N 
(3.4) N(S,t) = d. (S) 

wa 
.(t)6 ( a 

i =1 a =1 

where: 

Z 

(3.5) wa,i(t) Zati,t) . 

If we denote the average of the weights, 
wa for reports of relationship r, by: 

N L 
(3.6) r i (reC) 

a=1 i=1 " 
so that Ar 1, then, similarly to the 

reC 

development in (1) the bias of the estimate can 
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be approximated by: 

(3.7) B = No - N -N {1-(1+V2)Pr} . 

reC 

Neglecting the correlated response variance, 
the (simple) response variance, RV, can be 
approximated by: 

2 2 (3.8) RV N 
re C 

[V Pr Br + (1+V )P 
r 
(1-P 

where: 

N L 2 
(3.9) Br = 

al i1 
2 

is the average of the squared weights, wa,i, for 

reports of relationship r. Similarly the sampling 
variance can be approximated by: 

(3.10) SV = 
[N(l+V2)2{ Br 

reC 

N L 
+ E 

r r'eC a a'=1 i=1 , , 

- Nó/L]. 

The above expressions for the components of 
the mean square error, (3.7), (3.8) and (3.10), 
are exactly the same, for the case of no over - 
reporting, as the expressions (3.2), (3.8) and 
(3.9) in [1], with wa replacing 1 /sa. The 

above expressions are in fact, a generalization 
of the case of unit weighting (i.e. wa 1 

They can thus be easily extended to the case 
where M additional "non- events" are liable to be 
reported in exactly the same way as in [1], with 
1 replaced by 

4. Evaluation of the Components 

The values of the parameters required to 
evaluate the components can be estimated from an 
evaluation survey, as specified in [1], or as 
proposed by Sirken and Royston [4]. However, the 
values of A 

t 
and of Br which are, of prime impor- 

tance in the components of error and contribute 
importantly to the differences between counting 
rules and weighting methods, can, in cases 
be obtained from approximations to the distribu- 
tions of components of the weights wa by simple 

single -parameter distributions. 

For example, the empirical results of a 
multiplicity study on births in Israel, described 
fully in Nathan, Schmelz and Kenvin [2], show 
that certain household multiplicities were dis- 
tributed approximately as Poisson distributions. 



Thus, for the counting rule for which births are 
reported by the woman giving birth, by her sisters 
and by her mother (in that order of precedence, 
i.e. mothers only report in the absence of sisters 
in the household), the distributions of the number 
of households of sisters for networks with and 
without mothers (not residing with daughters) are 
given in Table 1. The fit to the theoretical 
Poisson distributions is good and the difference 
between the empirical and the theoretical distri- 
butions is not significant. The values of the 
components of relative error resulting from the 
use of approximation, for various combina- 
tions of the parameters are given in Table 2, for 
unit weighting. A similar approximation for ele- 
ment weighting gives the results of Table 3. 
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Table 1: Empirical and theoretical distributions of household multiplicities 
(reports on births by women giving birth *) 

Nimber of households 
of sisters 

sa,3 

Separate household of mother 

s (1) s =i(2) 

Empirical Theoretical Empirical Theoretical 

Total 

0 

1 

2 

3 

4+ 

164 

41 

54 

38 

18 

13 

164 

37.04 

55.11 

41.00 

20.33 

10.52 

164 

52 

55 

34 

16 

7 

164 

47.85 

58.95 

36.30 

14.90 

6.00 

Mean 1.488 

x2 
(goodness of fit) 1.517 

1.232 

1.017 

*Source: Multiplicity study of marriages and births in Israel. 

(1) Nbther's mother resides in household with daughter or deceased. 

(2) Nbther's mother resides in separate household (without daughters). 
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Table 2: Components of mean square error for various values of basic model parameters - unit weighting. 

Parameter /Component 
Conventional 

Multiplicity rule alternatives rule 

Values of basic parameters 

Mean number of sisters' hóuseholds 

per network without household of mother - 1.50 

1.25 

.50 

1.80 

1.25 

.50 

1.50 

1.50 

.50 

1.80 

1.50 

.50 

1.50 

1.25 

.60 

1.50 

1.25 

.50 

1.50 

1.25 

.50 

per network with household of mother - 
X1 

Proportion of networks without household of mother - R 

Under- reporting probabilities - 1 -Pr 

Event household (r=1) .02 .02 .02 .02 .02 .02 .02 .02 

Household of mother (r=2) .09 .09 .09 .09 .09 .09 .09 

Households of sisters (r=3) .19 .19 .19 .19 .19 .15 .19 

Over- reporting rates - 

Event household (r=1) .02 .02 .02 .02 .02 .02 .02 .02 

Household of mother (r=2) .18 .18 .18 .18 .18 .18 .18 

Households of sisters (r =3) .20 .20 .20 .20 .20 .20 .15 

Components of relative standard error (percentages) 

Total root mean square error - 4.12 4.02 4.06 3.96 4.10 5.00 3.93 5.37 

Bias - B/N 1.14 1.06 1.00 0.92 0.83 3.07 0.49 0.04 

Response standard error - 2.39 2.44 2.41 2.46 2.37 2.34 2.29 0.96 

Sampling standard error - /N 3.16 3.02 3.10 2.96 3.24 3.19 3.15 5.29 



Table 3: Components of mean square error for various values of basic model parameters - element weighting. 

Parameter? Component 

Values -of basic parameters 

Mean number of reporting persOns: 

in event household and in households of sisters (excluding 
woman giving birth) in networks without mother 

in households of sisters in networks with mother 

Proportion of networks without household of mother 

Proportion of sisters in separate households 

Larder- reporting probabilities 

3.40 4.00 3.40 4.00 3.40 3.40 3.40 3.40 

1.25 1.25 1.50 1.50 1.25 1.25 1.25 1.25 

.50 .50 .50 .50 .60 .50 .50 .50 

.90 .90 .90 .90 .90 .95 .90 .90 

Event household .02 .02 .02 .02 .02 .02 .02 .02 

Household of mother .09 .09 .09 .09 .09 .09 .09 .09 

Households of sisters .19 .19 .19 .19 .19 .19 .15 .19 

Over- reporting rates 

Event household .02 .02 .02 .02 .02 .02 .02 .02 

Household of mother .18 .18 .18 .18 .18 .18 .18 .18 

Households of sisters .20 .20 .20 .20 .20 .20 .20 .15 

Total root mean square error - /N 

Bias - B/N 

Response standard error - 

Sampling standard error - 

Components of relative standard error (percentages) 

4.17 4.09 4.05 3.65 4.02 4.12 5.63 3.63 

1.91 1.86 1.72 0.72 1.56 1.86 4.26 0.07 

2.56 2.59 2.58 2.58 2.57 2.56 2.50 2.45 

2.68 2.57 2.61 2.48 2.67 2.62 2.71 2.68 


